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Experimental data suggest that some classes of spiking neurons in the first layers of sensory systems are
electrically coupled via gap junctions or ephaptic interactions. When the electrical coupling is removed, the
response function �firing rate vs. stimulus intensity� of the uncoupled neurons typically shows a decrease in
dynamic range and sensitivity. In order to assess the effect of electrical coupling in the sensory periphery, we
calculate the response to a Poisson stimulus of a chain of excitable neurons modeled by n-state Greenberg-
Hastings cellular automata in two approximation levels. The single-site mean field approximation is shown to
give poor results, failing to predict the absorbing state of the lattice, while the results for the pair approximation
are in good agreement with computer simulations in the whole stimulus range. In particular, the dynamic range
is substantially enlarged due to the propagation of excitable waves, which suggests a functional role for lateral
electrical coupling. For probabilistic spike propagation the Hill exponent of the response function is �=1,
while for deterministic spike propagation we obtain �= 1

2 , which is close to the experimental values of the
psychophysical Stevens exponents for odor and light intensities. Our calculations are in qualitative agreement
with experimental response functions of ganglion cells in the mammalian retina.
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I. INTRODUCTION

Unveiling how neuronal activity represents and processes
sensory information remains a very difficult problem, despite
theoretical and experimental efforts undertaken by neurosci-
entists for the last several decades �for a recent review, see
�1��. In this broad context, relatively little attention has been
devoted to the question of how organisms cope with the sev-
eral orders of magnitude spanned by the intensities of sen-
sory stimuli �2�. This astonishing ability is most easily re-
vealed in humans by classical results in psychophysics �3�:
the perception of the intensity of a given stimulus is experi-
mentally shown to depend on the stimulus intensity r as
�log�r� �Weber-Fechner law� or �r� �Stevens law�, where
the Stevens exponent � is typically �1. Those laws have in
common the fact that they are response functions with broad
dynamic range, i.e., they map several decades of stimuli into
a single decade of response.

One would like to understand how this broad dynamic
range is physically achieved by neuron assemblies. Recent
experimental evidence suggests that electrical coupling
among neurons in the early layers of sensory systems plays
an essential role in weak stimulus detection. Deans et al. �4�
showed that electrical coupling is present in the mammalian
retina via gap junctions �ionic channels that connect neigh-
boring cells�. In particular, the spiking response of ganglion
cells to light stimulus changes dramatically when the gap
junctions are genetically knocked out: both sensitivity and
dynamic range are reduced �4�.

Another example comes from the olfactory system. The
spiking response of isolated olfactory sensory neurons

�OSNs� to varying odorant concentration usually presents a
narrow dynamic range �5,6�. This is in contrast with
the response observed in the next layers of the olfactory
bulb: both the glomerular �7,8� and mitral cell �9� responses
present a broader dynamic range than the OSNs. In this
case, the tightly packed unmyelinated axons of OSNs in the
olfactory nerve are believed to interact electrically via ephap-
tic interactions �10� �i.e., mediated by current flow through
the extracellular space�, as shown by Bokil et al. �11�. In
particular, their results indicate that a spike in a single axon
can evoke spikes in all other axons of the bundle, suggesting
that some computation is performed prior to the glomerular
layer.

Motivated by these results, previous papers have shown
through numerical simulations that electrical coupling
among neurons indeed changes the response function in a
way that is consistent with experimental results. Due to the
coupling, stimuli generate excitable waves which propagate
through the neuron population. The interplay between wave
creation and wave annihilation leads to a nonlinear amplifi-
cation of the spiking response, increasing the sensitivity at
low input levels and enhancing the dynamic range �12,13�.
In one dimension, the robustness of the mechanism is at-
tested by the diversity of models employed: either the bio-
physically realistic Hodgkin-Huxley equations �12,14�, a lat-
tice of nonlinear coupled maps �13,15,16�, or the Greenberg-
Hastings cellular automata �GHCA� �12,13� yield
qualitatively similar results. The same phenomenon has re-
cently been observed in simulations with the two-
dimensional GHCA �17�.

In this paper we calculate the response of excitable
GHCA model neurons �18�, where the bidirectional �electri-
cal� coupling is modeled by a probability p of spike trans-
mission. While the uncoupled case p=0 can be exactly
solved, the coupled case p�0 is handled within two mean
field approximations, namely at the single-site and pair lev-
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els. The aim is to shed light on the analytical behavior of the
response function for the one-dimensional case, therefore
building on previous efforts which have relied entirely on
numerical simulations.

Our focus on the response of a continuously driven spa-
tially extended excitable system should be carefully con-
fronted with other recent studies, where the main interest has
been on phase transitions between an excitable and a self-
sustained collective state. For instance, the SIRS model of
epidemics in hypercubic lattices has been recently investi-
gated under the mean field and pair approximations �19�. In
those contagion models, stationary self-sustained activity be-
comes stable for sufficiently strong connection among neigh-
bors, a behavior which has been shown to be universal under
very general assumptions �20�. Similar results have been ob-
tained for a variety of neuronal models, including collective
responses to a localized transient stimulus �21,22�, as well as
the emergence of sustained activity in complex networks
�22,23�.

While interesting in its own, the framework of stable-
unstable collective transitions does not seem particularly
suited for our modeling purposes. To account for sensory
responses, the employed GHCA model is an excitable system
which always returns to its absorbing state in the absence of
stimulus; there are no phase transitions. The refractory pe-
riod of the GHCA model neurons is absolute �unlike, say,
reaction-diffusion lattices�, mimicking the deterministic be-
havior of continuous-time systems like the Hodgkin-Huxley
equations or integrate-and-fire models �14�. The only source
of stochasticity of the model regards the firing of the neu-
rons. Stimuli can come from spiking neighbors �with prob-
ability p� or from an “external” source, which is modeled
by a Poisson process and represents sensory input. Therefore,
in the limit p=1 the dynamics is that of a deterministic ex-
citable lattice being stochastically stimulated, which casts
the problem into the framework of probabilistic cellular
automata �24�.

The paper is organized as follows. In Sec. II, the GHCA
rules are described; Sec. III contains the exact calculations
for the response of uncoupled neurons, while in Secs. IV and
V results for the coupled case are discussed in the mean field
and pair approximations, respectively. Our concluding re-
marks are presented in Sec. VI.

II. THE MODEL

In the n-state GHCA model �18� for excitable systems,
the instantaneous membrane potential of the ith cell
�i=1, . . . ,L� at discrete time t is represented by xi�t�
� �0,1 , . . . ,n−1�, n�3. The state xi�t�=0 denotes a neuron
at its resting �polarized� potential, xi�t�=1 represents a spik-
ing �depolarizing� neuron, and xi�t�=2, . . . ,n−1 account for
the afterspike refractory period �hyperpolarization�. We em-
ploy the simplest rules of the automaton: if xi�t�=0, then
xi�t+1�=1 only if there is a supra-threshold stimulus at site i;
otherwise, xi�t+1�=0. If xi�t��1, then xi�t+1�= �xi�t�+1�
mod n, regardless of the stimulus. In other words, the rules
state that a neuron only spikes if stimulated, after which it

undergoes an absolute refractory period before returning to
rest.

Whether the neurons are isolated or coupled is implicit in
the definition of the supra-threshold stimulus. We assume
external supra-threshold stimuli to be a Poisson process with
rate r �events per second�. Hence at each time step an exter-
nal stimulus arrives with probability

��r� = 1 − e−r� �1�

per neuron. Notice that �=1 ms corresponds to the approxi-
mate duration of a spike and is the time scale adopted for the
time step of the model. The number of states n therefore
controls the duration of the refractory period �which corre-
sponds to n−2, in ms�. In the biological context, r could be
related for example with the concentration of a given odorant
presented to an olfactory epithelium �5�, or the light intensity
stimulating a retina �4�. We shall refer to r as the stimulus
rate or intensity.

When electrically coupled, neurons at rest can also be
stimulated by their neighbors. We define p and q as the prob-
abilities that a resting neuron spikes as a consequence of
transmission �ionic current flow� from respectively one or
two spiking neighbors �see Eq. �3��. We keep p and q as
two independent parameters in most calculations to show
the robustness of some asymptotic results. In the simulations,
we concentrate on the more physically intuitive choice of
q=1− �1− p�2, where the contributions from two spiking
neighbors are independent.

Let Pt
�i��k� be the probability that the ith neuron is in state

k at time t. Since the dynamics of the refractory state is
deterministic, the equations for k�2 are simply

Pt+1
�i� �2� = Pt

�i��1�

Pt+1
�i� �3� = Pt

�i��2�

�

Pt+1
�i� �n − 1� = Pt

�i��n − 2� . �2�

To describe the coupling among first neighbors, let
Pt

�i��k , l ,m� be the joint probability that sites i−1, i and
i+1 are respectively in the states k, l and m at time t. Fol-
lowing the definitions of �, p, and q above, the equation for
Pt

�i��1� thus becomes

Pt+1
�i� �1� = �1 − �1 − ���1 − q��Pt

�i��1,0,1� + �1 − �1 − ���1 − p��

		

k�1

n−1

Pt
�i��1,0,k� + 


k�1

n−1

Pt
�i��k,0,1��

+ �

k�1

n−1



l�1

n−1

Pt
�i��k,0,l� . �3�

Finally, the dynamics for Pt
�i��0� can be obtained by the nor-

malization condition
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k=0

n−1

Pt
�i��k� = 1, ∀ t,i , �4�

which completes the set of equations for one-site
probabilities.

It is reasonable to assume homogeneity in the system
when L→
, so we can drop the superscript �i� in Eqs.
�2�–�4� and in what follows. We also expect isotropy �right-
left symmetry� in the probabilities: Pt�k , l�= Pt�l ,k�,
Pt�k , l ,m�= Pt�m , l ,k�, etc. Recalling the normalization con-
dition 
 j1=0

n−1 Pt�j1 , j2 , . . . , jm�= Pt�j2 , . . . , jm�, one can rewrite
Eq. �3� as

Pt+1�1� = �Pt�0� + 2p�1 − ��Pt�1,0�

+ �1 − ���q − 2p�Pt�1,0,1� . �5�

The stationary value of any joint probability will be de-
noted by omitting the subscript t, thus P�•�� limt→
 Pt�•�.
We start by solving Eqs. �2� and �4� in the stationary state,
which together yield

P�0� = 1 − �n − 1�P�1� , �6�

a result which is exact and holds ∀p ,q.

We are interested in obtaining the behavior of P�1� as a
function of � �or r�. Note that P�1� coincides with the aver-
age firing rate per neuron �measured in spikes per ms, ac-
cording to the choice of �� in the limit L , t→
. In simula-
tions, firing rates have been calculated by division of the
total number of spikes in the chain by LT, where T
�O�105� and L�O�105� were the typical number of time
steps and model neurons employed. We define F���� P�1�
as the response function of the system.

Due to the absolute nature of the refractory period,
the maximum firing rate of the model neurons is
Fmax�1/n, a result which is easily obtained ∀p ,q by setting
�=1 in Eqs. �5� and �6�. The dynamic range �� of the re-
sponse curve F��� follows the definition commonly
employed in biology �5,25�:

�� = 10 log10	�0.9

�0.1
� , �7�

where �x satisfies

F��x� = xFmax. �8�

The dynamic range is therefore the number of decibels of
input which are mapped into the 
9.5 dB of output com-
prised in the �0.1Fmax ,0.9Fmax� interval �see Fig. 3�. In the
biological context of the model, it measures the ability of the
system to discriminate different orders of magnitude of

FIG. 1. Response curves for �a� n=3 and �b� n=10 automata:
simulations �symbols� and mean field approximation �lines, accord-
ing to Eq. �11��. From bottom to top, p=0, 0.3, 0.6, and 1,
q=1− �1− p�2. In the simulations, standard deviations over ten runs
are smaller than symbol sizes, so error bars are omitted in all fig-
ures. Notice the negative slope and multi-valuedness of the single-
site approximation for p�

1
2 and ��0.

FIG. 2. Response curves for �a� n=3 and �b� n=10 automata:
simulations �symbols� and pair approximation �lines, according to
Eqs. �17� and �18��. From bottom to top, p=0, 0.3, 0.6, and
1, q=1− �1− p�2. The pair approximation eliminates the small-�
anomalies of the single-site solution, yielding excellent agreement
with simulations for the extreme cases p=0 and p=1.
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stimulus intensity. We will show below that if one chooses to
calculate �r using rx�−�−1 ln�1−�x� instead of �x in Eq. �7�,
results are essentially unchanged.

III. UNCOUPLED NEURONS

The uncoupled case p=q=0 can be exactly solved by tak-
ing the limit t→
 in Eq. �5� which, together with Eq. �6�,
yields

P�1� = f��� =
�

1 + �n − 1��
. �9�

This linear saturating response is depicted for n=3 �Figs.
1–3� and n=10 �Figs. 1 and 2�, in complete agreement with
simulations. It belongs to the family of Hill functions defined
by H��x��Cx� / �x0

�+x��, where the Hill exponent in this
case is �=1.

The dynamic range can be promptly calculated:
���n�=10 log10��1+9n� / �1+n /9�� and �r�n�=10 log10�ln�1
+9/n� / ln�1+1/ �9n���, both of which rapidly converge to
10 log10�81�
19 dB for moderate values of n �see lower
curves in Fig. 4�. As we shall see, the electrical coupling can
lead to dynamic ranges typically twice as large.

IV. COUPLED NEURONS: MEAN FIELD
APPROXIMATION

As can be seen in Eq. �5�, Pt�1� depends on two- and
three-site probabilities, and in general k-site probabilities de-
pend on up to �k+2�-site probabilities. The dynamical de-
scription of the system thus requires an infinite hierarchy of
equations. The mean field approximation at the single-site
level corresponds to the simplest truncation of this hierarchy

and consists in discarding the influence of all neighbors in
the conditional probabilities �26�, thus Pt�j1 � j2 , . . . , jm�
� Pt�j1�, which leads to

Pt�j1, . . . , jm� � �
k=1

m

Pt�jk� . �10�

In this approximation, Eq. �5� becomes

Pt+1�1� � Pt�0��� + 2p�1 − ��Pt�1�

+ �q − 2p��1 − ��Pt�1�2� , �11�

which, together with Eq. �6�, can be used to eliminate P�0�
and render P�1�=F��� implicitly through the relation

� �
�1 − 2p�F + �2pn − q�F2 + �n − 1��q − 2p�F3

�1 − �n − 1�F��1 − 2pF + �2p − q�F2�
. �12�

As a consistency check, notice that setting p=q=0 in Eq.
�12� recovers Eq. �9� �in other words, mean field is exact for
the uncoupled case, as it should�. However, for 0� p ,q�1,
F��� as given by Eq. �12� yields in general a poor agreement
with numerical simulations, as can be seen in Fig. 1 for dif-
ferent values of p. When �
0, Eq. �12� predicts F
� / �1
−2p�, which leads to obviously nonphysical results
for p�

1
2 �see leftmost part of Fig. 1�. In particular, F��� is

multi-valued, leading to lim�→0+ F�0. The mean field result
therefore suggests a transition to an ordered state at �=0
which is simply forbidden by the automaton rules �27�. By
generalizing Eq. �11�, this failure to predict the absorbing
state of the system can in fact be extended to regular lattices
with coordination z, where the single-site approximation

yields F 

�→0

� / �1− pz�. Since this level of approximation is

FIG. 3. Linear-log plot of the response curve for n=3 automata
with p=q=1 �filled circles�, p=0.5 and q=1− �1− p�2 �open tri-
angles�, and p=q=0 �open circles�. Lines correspond to the pair
approximation. Horizontal lines are F=0.1Fmax and F=0.9Fmax,
vertical lines are �=�0.1 and �=�0.9, and arrows illustrate the dy-
namic range �� � Eq. �7�� for p=0 and p=1. The dynamic range of
a chain of neurons with deterministic spike propagation is about
twice as large as that of its uncoupled counterpart.

FIG. 4. Dynamic ranges �triangles for ��, circles for �r� as a
function of the number of states of the GHCA, obtained from the
stationary solution of the pair approximation. Open �filled� symbols
correspond to the p=q=0 �p=q=1� case. Inset: �� as a function of
p for n=10 for simulations �dashed line� and pair approximation
�solid line�. In spite of the underestimation of the response observed
in Fig. 2, the pair approximation is able to reproduce the behavior
of the dynamic range as a function of the probability of spike
transmission.
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clearly not satisfactory for the calculation of the dynamic
range, a refinement is needed.

V. COUPLED NEURONS: PAIR APPROXIMATION

The pair approximation consists in keeping the influence
of only one neighbor in the conditional probabilities �26�,
thus Pt�j1 � j2 , . . . , jm�� Pt�j1 � j2�. In this case m-site prob-
abilities are reduced to combinations of up to two-site prob-
abilities. In particular, three- and four-site probabilities be-
come �26�

P�k,l,m� �
P�k,l�P�l,m�

P�l�
, �13a�

P�j,k,l,m� �
P�j,k�P�k,l�P�l,m�

P�k�P�l�
. �13b�

It is therefore possible to rewrite Eq. �5� in this approxima-
tion:

Pt+1�1� � �Pt�0� + �1 − ��Pt�1,0�

		2p + �q − 2p�
Pt�1,0�
Pt�0� � . �14�

Equation �14�, on its turn, depends on Pt�1,0�, whose evo-
lution can be exactly obtained �up to homogeneity and isot-
ropy assumptions�:

Pt+1�1,0� = �Pt�n − 1,0� + p�1 − ��Pt�n − 1,0,1�

+ ��1 − ��Pt�0,0� + p�1 − ���1 − 2��Pt�1,0,0�

− p2�1 − ��2Pt�1,0,0,1� . �15�

With the help of the pair approximation in Eqs. �13�, Eq. �15�
becomes

Pt+1�1,0� � Pt�n − 1,0�	� + p�1 − ��
Pt�1,0�
Pt�0� �

+ �1 − ��Pt�0,0�	� + p�1 − 2��
Pt�1,0�
Pt�0�

− p2�1 − ��
Pt�1,0�2

Pt�0�2 � . �16�

Since Pt�j ,0� depends on Pt�j−1,0� and Pt�j−1,n−1�, and
Pt�0,0� depends, among others, on Pt�n−1,n−1�, all the
equations for two-site probabilities are in principle required
for the dynamical description of the system. Together
with the equations for single-site probabilities, they form a
�n2+3n� /2-dimensional map whose stationary stable solu-
tion can be analytically studied. While the Appendix contains
details of the derivation of those equations, we discuss the
main results below.

The main point to be noted is that the calculation of the
stationary state presents additional difficulties when n�4. In
that case, the pair probabilities P�j ,0� with 2� j�n−2 have
the same stationary value, but differ from P�n−1,0�. In par-
ticular, for p=q=1 one obtains P�j ,0�=0 �2� j�n−2, see
Eq. �A10��, which in turn leads to many other vanishing
probabilities and gives the deterministic case a sparse sta-
tionary matrix �see Eqs. �A4�, �A5�, and �A8��. Those terms
do not exist for the n=3 case, which makes its analysis con-
siderably simpler. In either case, for n�3 one obtains the
reasonable result P�n−1,0�� P�1,0�, the l.h.s. �r.h.s.� being
associated to the end �beginning� of an excitable wave front
�see Eq. �A12��. Combining these results, a normalization
condition and the linearity of Eq. �16� in Pt�0,0�, we obtain
�see the Appendix�

P�0� − P�1,0��2 + �n − 3�	 �1 − p�P�0� + �p − q�P�1,0�
P�0� − pP�1,0� ��

�
P�1,0�P�0��P�0� − pP�1,0��

�P�0�2 + p�1 − 2��P�0�P�1,0� − p2�1 − ��P�1,0�2 ,

�17�

which is valid ∀n�3. Consider now the stationary state of
Eqs. �6� and �14�. They can be combined in a quadratic equa-
tion for P�1,0�, yielding

�2p − q�P�1,0� � G±�P�0�� � pP�0� ±�P�0��P�0���n − 1�p2 + 2p − q + ��n − 1��2p − p2 − q�� + �q − 2p��
�n − 1��1 − ��

. �18�

Since P�1,0� must vanish ∀p ,q in the limit �→0, G− is the
only acceptable solution.

The solution of Eqs. �17� and �18� determines P�0�
as a function of �. Instead of numerically solving
them, we iterate the �n2+3n� /2-dimensional map involving
the one- and two-site probabilities for each value of �

until it converges to its stationary state. Despite the
growing number of equations with n, this method has the
advantage of avoiding unstable fixed points �26�
�Eqs. �17� and �18� can have more than one solution�.
Once P�0� is known, the response P�1�=F��� is obtained via
Eq. �6�.
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A. Deterministic spike propagation „p=1…

Ordinary differential equations �ODEs� are the standard
modeling tool in computational neuroscience. This is due to
the fact that, despite the stochastic nature of the opening and
closing of individual ionic channels, a neuron containing a
large number of such channels can very often be extremely
well described by a deterministic dynamics �14� �an ap-
proach which has been established since the seminal work of
Hodgkin and Huxley �28��. In the present context, it is there-
fore important to address the case p=1. This limit is consis-
tent with a variety of scenarios in which, in addition to the
dynamics of individual neurons, spike transmission is also
well described by deterministic behavior. Specifically regard-
ing our present study, deterministic spike transmission due to
electrical coupling has previously been employed in the lit-
erature to model axo-axonal interactions both via ephaptic
interactions �e.g., in the olfactory nerve �11�� and gap junc-
tions �e.g., in the hippocampus �27,29��. This is in contrast
with, say, dendro-dendritic gap junctions or chemical syn-
apses �in the latter case, synaptic transmission can sometimes
be as low as 10% due to the inherent stochasticity in the
process of neurotransmitter release �14,30��, where the p=1
limit can hardly be expected to apply. As we shall see in the
following, in addition to its biological relevance, the re-
sponse function for p=1 also has a different characteristic
exponent which will help us understand the limiting behavior
for p
1.

Figure 2 shows the excellent agreement between the pair
approximation and the simulations when p=q=1. One ob-
serves that the response is particularly enhanced in the low
stimulus range. This feature is best seen in the logarithmic
scale of Fig. 3: in comparison with the uncoupled case
p=0, the effect of the electrical interaction is to increase the
sensitivity of the response for more than a decade, leading to
a dramatic rise of the dynamic range.

For each value of n, we can thus obtain the stationary
response F��� and the dynamic ranges �� and �r in the pair
approximation. Even though the response curve changes
considerably for varying n �since F is bounded by
Fmax=1/n, see Fig. 2�, the dynamic range levels off
smoothly, as can be seen in Fig. 4. For increasing n, the
dynamic range of the p=q=1 case approaches twice the
value for the uncoupled case. The fact that this result holds
for both �r and �� can be understood on the basis of the
low-stimulus amplification, which plays the central role in
the phenomenon: in this regime � is approximately linear in
r. Should one choose a different relationship ��r�, �r would
obviously have different values, but the drastic enhancement
in the response due to the electrical coupling would not be
affected.

In order to understand the low-stimulus amplification in-
duced by the coupling, we have analyzed Eqs. �17� and �18�
when �
0. Inspection of Fig. 2 and previous numerical
simulations �12� suggests that P�1�
C��, with ��1. This
ansatz can be inserted into Eqs. �6�, �17�, and �18� for general
p and q, yielding �= 1

2 and p=1 as solutions. Deterministic
spike propagation therefore leads to a power law response

F��� 

�→0

�2� , �19�

a result that holds ∀n ,q, as should be expected. This power
law suggests a Hill function with �= 1

2 , which is an excellent
approximation for F��� in the whole � interval when n is
large. This result explains the doubling of the dynamic range
as compared to the uncoupled case and is reminiscent of
reaction-diffusion processes modeled by lattice gases
�31–34� and partial differential equations �35�. Since the Hill
function can be regarded as a saturating Stevens law, it is
interesting to note that the experimental values of the
Stevens exponents for light and smell intensities are respec-
tively �
0.5 and �
0.6 �3�.

Let us now consider a chain with finite L and a very small
value of � such that a single external stimulus occurs in a
given time interval. In this case, the deterministic nature of
the propagation would lead to L spikes in the chain, while a
single spike would be observed if the neurons were un-

coupled. One would thus have F
Lf , and since f 

�→0

� �from

Eq. �9�� we obtain F 

�→0

L�. This corresponds to a linear
regime where excitable waves do not interact. If one in-
creases �, waves will start annihilating each other, leading to
the power law response of Eq. �19�, as can be clearly seen in
Fig. 5. For a given system size L, there is therefore a cross-
over value �c�L�
2/L2 from a linear to a nonlinear re-
sponse. In an infinite chain, there is no linear response since
for any nonzero stimulus rate two excitable waves will in-
evitably interact.

To assess the finite size effects in the biological context of
the model, we notice that the dynamic range will be affected
only if �c�L���0.1, that is, for L
20n. For neurons with
refractory periods of the order of tens of ms, neuronal assem-
blies with L�103–4 should therefore be well approximated
by the limit L→
, as can be seen in Fig. 6. It is important to
emphasize, however, that even small chains dominated by

FIG. 5. Log-log plot of the response curve for p=q=1. Pair
approximation �solid lines� and simulations �symbols� follow a
power law ��= 1

2
� for weak stimuli, while finite size effects lead to

a linear response F
L� �dotted lines� for �
�c�L�.
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finite size effects still possess dynamic ranges which are sig-
nificantly larger than those of the uncoupled case. For
�0.1
�c�L�, the dynamic range increases approximately
logarithmically with the total number of connected neurons,
a result which holds for regular lattices in any dimension
�17�.

B. Probabilistic spike propagation „pÅ1…

For p�1, communication between spiking and resting
neurons may eventually fail. This provides us with the sim-
plest test under which the robustness of the mechanism for
dynamic range enhancement can be checked. From the bio-
logical point of view, this regime could be useful for model-
ing networks of neurons connected by chemical synapses, for
instance.

We start the analysis of the p�1 case by noticing in Figs.
2 and 3 that the agreement between simulations and the pair
approximation is better than the mean field results �espe-
cially in the low-stimulus region�, but certainly not as good
as in the extreme cases p=0 and p=1. This inevitably affects
the estimation of the dynamic range via the stationary state
of the pair approximation �see below�, but nonetheless al-
lows us to understand qualitatively how the response
changes as p varies.

As pointed out in the preceding section, the dynamic
range is enhanced for p=1 primarily due to the low-stimulus
amplification associated to the propagation of excitable
waves. As opposed to the deterministic case, however, for
p�1 a single excitable wave traveling in an infinite
chain initially at rest will eventually die out. We should
therefore expect a qualitative change in the response function
for �
0. This is indeed confirmed by reinserting the ansatz
P�1�
C�� in Eqs. �6�, �17�, and �18� without the constraint
��1. In this case, the linear behavior suggested by the plots
in Fig. 2 is easily confirmed:

F��� 

�→0	1 + p

1 − p
�� , �20�

which is again valid ∀n ,q. Therefore, the low-stimulus re-
sponse for p�1 is governed by �=1, which is confirmed by

the simulations displayed in Fig. 7. Interestingly, such a
change in exponent for p�1 seems to be absent from
reaction-diffusion models in lattice gases �31–34� as well as
partial differential equations �35�.

Thanks to the growing coefficient in Eq. �20�, for p
1
the proximity to the transition that occurs at p=1 produces a
crossover in the response from a linear to a square root be-
havior, dismissing the suspicion that a larger exponent might
severely deteriorate the enhancement of the dynamic range
�see Fig. 7�. In particular, notice that, for p
1, �= 1

2 is the
dominant exponent at F=0.1Fmax, which is used to calculate
the dynamic range �see horizontal arrow in Fig. 7�. This ex-
plains the smooth monotonic increase in �� with p, as shown
in the inset of Fig. 4, even though the exponent changes
discontinuously at p=1. On the one hand, we observe that
deterministic spike propagation �p=1� is certainly not essen-
tial for the enhancement of the dynamic range, in the sense
that any p�0 yields a better response than uncoupled neu-
rons. On the other hand, it is interesting to point out that, as
p is varied from 0 to 1, the increase in dynamic range is
particularly pronounced for p�0.9. This is in agreement
with the conjecture that the reliability of electrical coupling
among spiking neurons could indeed play a significant role
in early sensory processing.

VI. CONCLUDING REMARKS

We have calculated the collective response to a Poisson
stimulus of a chain of electrically coupled excitable neurons
modeled by n-state Greenberg-Hastings cellular automata.
The single-site mean field approximation has been shown to
give poor results, failing to predict the absorbing state of the
lattice in the absence of stimulus for p�

1
2 . The pair approxi-

mation yields a response curve which agrees reasonably well
with simulations in the whole stimulus range. It is interesting
to remark that the agreement is particularly good when
p=q=1, a deterministic regime in which the GHCA lattice

FIG. 6. Dynamic range as a function of the system size L for
p=q=1. Lines are just guides to the eye. FIG. 7. Log-log plot of the response curve: pair approximation

�solid lines� and simulations �symbols� with q=1− �1− p�2 and
n=3. For p
1, there is a crossover between �=1 and �= 1

2 . The
horizontal arrow shows 0.1Fmax.
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mimics a system of coupled nonlinear ODEs. This reinforces
an interesting perspective in the context of computational
neuroscience: the possibility of applying techniques from
nonequilibrium statistical mechanics to the study of spatially
extended nonlinear systems.

The enhancement of the dynamic range in the presence
of electrical coupling is due to low-stimulus amplification.
For uncoupled neurons �p=0� the response is governed by
the Hill exponent �=1, leading to a dynamic range of
�19 dB. For coupled neurons this value can be doubled in
the limit p=q→1, when the Hill exponent becomes �= 1

2 .
This value is close to Stevens exponents observed in psycho-
physical experiments of smell and light intensities. For 0
� p�1, the exponent remains �=1, but the dynamic range
increases smoothly, which can be understood on the basis of
the crossover behavior observed in the response function for
p
1.

In the context of experiments at the cellular level, the
enhancement of the dynamic range associated to an increase
in sensitivity is also observed in both the olfactory �8� and
visual �4� systems. While the dynamic range of OSNs �the
neurons which perform the initial transduction� is about
�10 dB �5,6�, the glomeruli �the next processing layer� have
dynamic ranges at least twice as large �8�. It remains to be
investigated experimentally whether this enhancement is in-
deed due to ephaptic interactions among the unmyelinated
OSN axons in the olfactory nerve.

Stronger experimental support for our conjecture on the
role of electrical interactions is available for the mammalian
retina. Deans et al. �4� have measured the firing rates of
on-center ganglion cells for varying light intensity �measured
in isomerized molecules of rhodopsin per rod per second,
or Rh*/ rod/s�. The response curves have been obtained for
both wild type �WT� mice as well as mice in which the
expression of the protein connexin36 �responsible for the
gap junction intercellular channels� has been genetically
knocked out �Cx36-KO�. The difference in the response
curves can be seen in Fig. 8. They present the same qualita-
tive behavior of the curves shown in Fig. 3, exhibiting an
increase in dynamic range in the presence of electrical cou-
pling: 14 dB for Cx36-KO and 23 dB for WT, values which
are of the same order as those of Fig. 6. In particular, the
exponent of the “coupled” �WT� case is �
0.58 �see inset�,
which is slightly larger than what is obtained in the pair
approximation.

The quantitative agreement between the analytical and ex-
perimental curves is limited. On the one hand, the theoretical
n=3 curve can provide a good fit of the Cx36-KO data for
p=q=0, while the coupled case p=q=1 does not adjust well
to the WT data. For n=10 and p=q=1, on the other hand,
the WT data are well matched by simulations with a finite
L=20 system �staying below the L→
 pair approximation�,
but for p=q=0 the same n=10 automata are unable to give a
good fit of the Cx36-KO data. The difficulties of a quantita-
tive match are not surprising: the retina is organized in
layers which have, to first order, a two-dimensional structure;
signal processing from the photoreceptors to the ganglion

cells involves a complex intermediate neuronal circuit �with
bipolar, horizontal and amacrine cells �36��; and individual
neurons themselves can have subtle dynamical properties
�such as adaptation, for instance�. All these properties are
clearly absent from our simple one-dimensional CA model.
Yet it correctly predicts the reduction in the dynamic range
of a neuronal system which loses electrical coupling among
its cells.

In order to have a quantitative agreement between experi-
mental and theoretical curves, additional modeling efforts are
needed which incorporate specific details of the system un-
der consideration. However, the response of simple models
of excitable media remains an important subject to be stud-
ied, precisely because they have the potential to reveal
simple mechanisms and scaling relations �35� whose robust-
ness can thereafter be subjected to further testing in experi-
ments and more detailed models. In this context, the simple
Greenberg-Hastings CA strikes an interesting balance, on the
one hand capturing essential features of collective neuronal
dynamics, while on the other hand lending itself to analytical
techniques borrowed from nonequilibrium statistical me-
chanics.
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FIG. 8. Experimental response curves �normalized firing rate vs.
light intensity� of retinal on-center ganglion cells in linear-log �main
plot� and log-log �inset� scales �data extracted from Fig. 6 of Ref.
�4��. Filled �open� circles are for WT �Cx36-KO� mice, solid
�dashed� lines show the results of the pair approximation, thus
L→
, with p=q=1 �p=q=0�. Upper curves are for n=10, lower
curves are for n=3. The dot-dashed line corresponds to simulations
with n=10, p=q=1, and L=20.
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APPENDIX: THE EQUATIONS FOR TWO-SITE
PROBABILITIES

1. Dynamics

In all derivations below, homogeneity and isotropy are
assumed. The sign “�” denotes that the equality holds in the
pair approximation �Eqs. �13��. We start by writing down the
equation for Pt�0,0�, which holds ∀n�3:

Pt+1�0,0� = Pt�n − 1,n − 1� + 2�1 − ���Pt�n − 1,0�

− pPt�1,0,n − 1�� + �1 − ��2�Pt�0,0�

− 2pPt�1,0,0� + p2Pt�1,0,0,1��

� Pt�n − 1,n − 1� + 2�1 − ��Pt�n − 1,0�

		1 − p
Pt�1,0�
Pt�0� � + �1 − ��2Pt�0,0�

		1 − 2p
Pt�1,0�
Pt�0�

+ p2 Pt�1,0�2

Pt�0�2 � . �A1�

The dynamics for two-site probabilities in the refractory pe-
riod obey a simple recursive rule due to the deterministic
evolution of the automata:

Pt+1�j,k� = Pt�j − 1,k − 1�, 2 � j,k � n − 1. �A2�

On the one hand, diagonal terms Pt�j , j� with j�2 recur-
sively depend on Pt�1,1�, whose dynamics can be written as
follows:

Pt+1�1,1� = �2Pt�0,0� + 2p��1 − ��Pt�1,0,0�

+ p2�1 − ��2Pt�1,0,0,1�

� Pt�0,0�	�2 + 2p��1 − ��
Pt�1,0�
Pt�0�

+ p2�1 − ��2 Pt�1,0�2

Pt�0�2 � . �A3�

Off-diagonal terms, on the other hand, ultimately depend on
Pt�j ,1�. For j=2, the equation is simply

Pt+1�2,1� = �� + p − p��Pt�1,0� + �1 − ���q − p�Pt�1,0,1�

� Pt�1,0��� + �1 − ��	p + �q − p�
Pt�1,0�
Pt�0� �� ,

�A4�

while for j�3 one has

Pt+1�j,1� = �Pt�j − 1,0� + p�1 − ��Pt�j − 1,0,1�

� Pt�j − 1,0�	� + p�1 − ��
Pt�1,0�
Pt�0� � . �A5�

Finally, one needs equations for Pt�j ,0�, j�2 �recall Eq.
�16� for Pt�1,0��. Like in Eq. �A4�, the case j=2 must be
considered separately:

Pt+1�2,0� = Pt�1,n − 1� + �1 − ���1 − p�Pt�1,0� + �1 − ���p − q�Pt�1,0,1�

� Pt�1,n − 1� + �1 − ��Pt�1,0�	�1 − p� + �p − q�
Pt�1,0�
Pt�0� � . �A6�

For j�3, on the other hand, one immediately obtains

Pt+1�j,0� = Pt�j − 1,n − 1� + �1 − ���Pt�j − 1,0�

− pPt�j − 1,0,1��

� Pt�j − 1,n − 1�

+ �1 − ��Pt�j − 1,0�	1 − p
Pt�1,0�
Pt�0� � , �A7�

which completes the set of all pair equations. Upon
iteration of Eqs. �2�, �4�, �14�, �16�, �A1�, and �A7�,
normalization conditions properly imposed in the initial
conditions are naturally preserved. To determine the
response function P�1�=F���, we wait until the
�n2+3n� /2-dimensional map reaches a stationary state
for each value of �. We describe below how the analysis
of the stationary state can be reduced to just two equations
�Eqs. �17� and �18��.

2. Stationary state

We start by handling the case n�4. In the stationary state,
the first term on the r.h.s. of Eq. �A7� becomes, via recursive
iterations of Eq. �A2�,

P�j − 1,n − 1� = P�1,1 + n − j�, ∀ j � 3. �A8�

The above result can on its turn be further developed by
means of Eq. �A5� as long as 1+n− j�3, rendering the sta-
tionary state of Eq. �A7�:

P�j,0� � P�n − j,0�	� + p�1 − ��
P�1,0�
P�0� �

+ �1 − ��P�j − 1,0�

		1 − p
P�1,0�
P�0� �, 3 � j � n − 2. �A9�

Notice that we have a nonhomogeneous set of n−4
linear equations for xj � P�j ,0� :xj �axn−j + �1−a�xj−1, where
a��+ p�1−��P�1,0� / P�0� and x2= P�2,0� accounts for the
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nonhomogeneity in the equations for x3 and xn−2. The solu-
tion of these equations is simply xn−2�xn−1� ¯ �x3�x2,
as can be checked by inspection. The combination of Eqs.
�A6� and �A5� in the stationary state, on the other hand, leads
to

P�j,0� � J�P�1,0�,P�0��

� P�1,0�	 �1 − p�P�0� + �p − q�P�1,0�
P�0� − pP�1,0� � ,

2 � j � n − 2. �A10�

One therefore obtains

P�n − 2,0� � P�n − 3,0� � ¯ � P�2,0� � J�P�1,0�,P�0�� .

�A11�

Finally, notice that P�n−1,0� can be obtained by combina-
tion of Eqs. �A7�, �A11�, and �A4�:

P�n − 1,0� � P�1,0� , �A12�

which completes the proof for n�4. For n=4, it suffices to
invoke Eqs. �A6� and �A5� to show that P�2,0�
�J�P�1,0� , P�0��. With this result, Eq. �A12� holds for
n�4. Finally, for n=3, Eqs. �A6� and �A4� together also lead
to Eq. �A12�.

Invoking the normalization condition Pt�0�=
 j=0
n−1Pt�j ,0�,

one can deduce that, on the one hand,

P�0,0� = P�0� − 2P�1,0� − �n − 3�J�P�1,0�,P�0�� .

�A13�

On the other hand, in the stationary state Eq. �16� depends
linearly on P�0,0�, so it can be inverted, yielding �after sub-
stitution of Eq. �A12�� P�0,0� as a function of P�1,0� and
P�0�. Equaling this function to Eq. �A13�, P�0,0� is elimi-
nated and one obtains Eq. �17�.
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